Lösungen / Statistik 1/01

1. Download Software

Link siehe Uebungsblatt

1. Download Skripts zu Software

Links siehe Uebungsblatt

3. a) Erst ein Programm zum Würfeln

Allgemeines

? Random

Random[] gives a uniformly distributed pseudorandom Real in the range
0 to 1. Random[type, range] gives a pseudorandom number of the specified type, lying in the specified range. Possible types are: Integer, Real and Complex. The default range is 0 to 1 . You can give the range \{min, max\} explicitly; a range specification of \max is equivalent to $\{0, \max \}$. Mehr..

Random[Integer, $\{1,6\}]$
6

Beispiel: gewürfelte Tabelle - gewürfelte 3-er-Gruppen

```
Table[Random[Integer, {1, 6}], {n, 1, 20}]
{6, 3, 6, 5, 6, 4, 2, 2, 6, 1, 1, 1, 6, 6, 5, 5, 5, 1, 3, 6}
Table[Table[Random[Integer, {1, 6}], {n, 1, 3}], {m, 1, 20}]
{{4,5,4},{3,6,4},{2,1,6},{6,6,6},{1,4, 2},{6, 1, 5},
    {1, 6, 2}, {6, 2, 4}, {3, 1, 3}, {4, 5, 3}, {2, 3, 1}, {2, 2, 4}, {1, 6, 3},
    {2,6,6}, {4, 3, 4}, {2, 5, 1}, {1, 6, 3}, {2, 5, 5}, {1, 6, 3}, {4, 1, 3}}
```

$\left(\begin{array}{lll}2 & 2 & 5 \\ 2 & 6 & 1 \\ 5 & 3 & 3 \\ 6 & 1 & 1 \\ 1 & 5 & 6 \\ 4 & 4 & 2 \\ 4 & 5 & 4 \\ 2 & 6 & 3 \\ 6 & 2 & 3 \\ 2 & 4 & 3 \\ 6 & 4 & 6 \\ 5 & 2 & 1 \\ 5 & 1 & 3 \\ 4 & 2 & 5 \\ 3 & 5 & 4 \\ 2 & 1 & 4 \\ 4 & 2 & 2 \\ 6 & 1 & 6 \\ 2 & 3 & 1 \\ 3 & 3 & 5\end{array}\right)$

3. b) Lösungen

Run ganz rechts auf blaue linie klicken, Enter (mehrmals möglich!!!!!)

L = Lektion -- Sprechstunde

W = Work / Arbeit

A=Anhang/ Appendice

Notwendige Packages laden
<< Graphics`Graphics`
<<Statistics`DescriptiveStatistics`

Ueb 1

Kurs

Home page Rolf Wirz
rowicus.ch

Ueb 2 L / W

a Würfeln

Zufallszahlen:

```
p[x_] := Random[]; k[i_] := Round[5 {p[x], p[x], p[x], p[x], p[x]} + 1];
k[1]
{2,1, 2, 1, 2}
k[1]
{2, 3, 4, 1, 2}
k[2]
{2, 3, 6, 5, 3}
```

Zahlen werden jedesmal neu generiert! Kann man das vermeiden?

```
u = k[2]
```

$\{6,5,2,4,2\}$
$u=k[2]$
$\{4,2,4,3,3\}$
u
$\{4,2,4,3,3\}$
u
$\{4,2,4,3,3\}$
u
$\{4,2,4,3,3\}$
k[2]
$\{2,3,3,2,6\}$
k[2]
$\{6,5,2,4,4\}$
u
$\{4,2,4,3,3\}$
u
$\{4,2,4,3,3\}$

k[3]

$$
\{3,2,5,2,3\}
$$

k[4]

$$
\{3,5,3,2,6\}
$$

Nun sollte es klar sein, wie es funktioniert.
\{a,b,c,d,e\}.\{f,g,h,i,j\} ist das Skalarprodukt

```
{a,b,c,d,e}.{1, 1, 1, 1, 1}
```

$a+b+c+d+e$
$s\left[i _\right]:=k[i] .\{1,1,1,1,1\} ; s[1]$

21
s[2]
18
s[3]
19
tab = Table[s[i], \{i, 50\}]
$\{21,16,16,17,16,21,17,21,17,20,20,21,24,18,21$,
15, 18, 19, 20, 13, 19, 22, 17, 19, 18, 18, 24, 20, 17, 25, 24, 15,
$17,18,16,14,17,17,17,14,13,15,16,20,15,20,13,21,19,16\}$

tab

$\{21,16,16,17,16,21,17,21,17,20,20,21,24,18,21$,
15, 18, 19, 20, 13, 19, 22, 17, 19, 18, 18, 24, 20, 17, 25, 24, 15, $17,18,16,14,17,17,17,14,13,15,16,20,15,20,13,21,19,16\}$

tab $=$ Sort [tab]

$\{13,13,13,14,14,15,15,15,15,16,16,16,16,16,16$,
$17,17,17,17,17,17,17,17,17,18,18,18,18,18,19,19,19$,
$19,20,20,20,20,20,20,21,21,21,21,21,21,22,24,24,24,25\}$

b Klassen

Klassen einteilen

Range [27]

```
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
    14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
```

```
rg = Range[27] + 3
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
rP = Partition[rg, 3]
{{4,5,6},{7, 8, 9}, {10, 11, 12}, {13, 14, 15},
    {16, 17, 18}, {19, 20, 21}, {22, 23, 24}, {25, 26, 27}, {28, 29, 30}}
```


Klassenmitten

```
(Min[rP[[1]]] + Max[rP[[1]]]) / 2
```

5
rPMean = Table[(Min[rP[[i]]] + Max[rP[[i]]])/2, \{i, 1, Length[rP]\}]
$\{5,8,11,14,17,20,23,26,29\}$

Extreme Werte der 5. Klasse

```
Max[rP[[5]]]
```

18
$\operatorname{Min}[r P[[5]]]$
16

Werte aus tab den Klassen zuordnen

```
Select[tab, (Min[rP[[5]]] < #1 < Max[rP[[5]]]) &]
{17, 17, 17, 17, 17, 17, 17, 17, 17}
freq = Table[Select[tab, (Min[rP[[i]]] - 1<#1<Max[rP[[i]]] + 1)&], {i, 1, Length[rP]}]
{{},{}, {}, {13, 13, 13, 14, 14, 15, 15, 15, 15},
    {16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18},
    {19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21},
    {22, 24, 24, 24}, {25}, {}}
```

Werte durch Klassenmittelwerte ersetzen

```
freq1 = Table[Table[rPMean[[i]], {k, 1, Length[freq[[i]]]}], {i, 1, Length[rP]}]
{{},{}, {}, {14, 14, 14, 14, 14, 14, 14, 14, 14},
    {17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17},
    {20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20},
    {23, 23, 23, 23}, {26}, {}}
```

Leere Klassen entfernen

```
freq2 = freq1 / . {} -> missing
```

```
{missing, missing, missing, {14, 14, 14, 14, 14, 14, 14, 14, 14},
    {17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17},
    {20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20},
    {23, 23, 23, 23}, {26}, missing}
```


freq3 $=$ DeleteCases[freq2, missing]

```
{{14, 14, 14, 14, 14, 14, 14, 14, 14},
    {17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17},
    {20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20}, {23, 23, 23, 23}, {26}}
```

File flach machen

freq4 = Flatten[freq3]

```
{14, 14, 14, 14, 14, 14, 14, 14, 14, 17, 17, 17, 17, 17, 17,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 20, 20, 20,
    20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 23, 23, 23, 23, 26}
```


freq5 = Frequencies [freq4]

```
{{9, 14}, {20, 17}, {16, 20}, {4, 23}, {1, 26}}
```


MatrixForm[freq5]

$\left(\begin{array}{ll}9 & 14 \\ 20 & 17 \\ 16 & 20 \\ 4 & 23 \\ 1 & 26\end{array}\right)$

Remove[x1, x2]
freq6 $=$ freq5 $/ \cdot\left\{x 1_{_}, x^{2} _\right\} \rightarrow\{x 2, x 1\}$
$\{\{14,9\},\{17,20\},\{20,16\},\{23,4\},\{26,1\}\}$

MatrixForm[freq6]

$\left(\begin{array}{ll}14 & 9 \\ 17 & 20 \\ 20 & 16 \\ 23 & 4 \\ 26 & 1\end{array}\right)$

Namen anpassen

```
classes = freq4;
classes1 = freq5;
```


c Graphics

BarChart[classes1];

Histogram[classes];

d
 LocationReport

tab

$\{13,13,13,14,14,15,15,15,15,16,16,16,16,16,16$,
$17,17,17,17,17,17,17,17,17,18,18,18,18,18,19,19,19$,
$19,20,20,20,20,20,20,21,21,21,21,21,21,22,24,24,24,25\}$

freq4

$\{14,14,14,14,14,14,14,14,14,17,17,17,17,17,17$,
$17,17,17,17,17,17,17,17,17,17,17,17,17,17,20,20,20$,
$20,20,20,20,20,20,20,20,20,20,20,20,20,23,23,23,23,26\}$
\{Mean[tab], Mean[classes]\} //N
$\{18.14,18.08\}$

LocationReport[tab] // N
$\{$ Mean \rightarrow 18.14, HarmonicMean \rightarrow 17.673, Median $\rightarrow 18$.

LocationReport[classes] / / N

$\{$ Mean \rightarrow 18.08, HarmonicMean $\rightarrow 17.6572$, Median $\rightarrow 17$.

e DispersionReport

DispersionReport[tab] // N

\{Variance \rightarrow 8.77592, StandardDeviation $\rightarrow 2.96242$, SampleRange $\rightarrow 12 .$, MeanDeviation $\rightarrow 2.4024$, MedianDeviation $\rightarrow 2$., QuartileDeviation $\rightarrow 2$.\}

DispersionReport[classes] //N

\{Variance \rightarrow 7.99347, StandardDeviation $\rightarrow 2.82727$, SampleRange $\rightarrow 12$., MeanDeviation $\rightarrow 2.3328$, MedianDeviation $\rightarrow 3 .$, QuartileDeviation $\rightarrow 1.5\}$

