Probl. 1 Schreibe $|grad(f(x,y))|^2$ in Polarkoordinaten!

Probl. 2 Gegeben ist die Funktion

$$f(x,y) = 1 - x^2 - 2(y+1)^2.$$

- (a) Berechne die Lage allfälliger Extrema.
- (b) Berechne die Richtungsableitung im Punkte P = (0, 2) in die Richtung eines Vektors, der aus \vec{e}_1 durch Drehung in positiver Richtung um 30° entstanden ist.
- (c) Berechne den Steigungswinkel der Tangente im Punkte P_0 .
- (d) Berechne den maximalen Steigungswinkel der Tangente in P_0 .
- (e) Berechne eine Gleichung der Tangentialebene Φ in diesem Punkte und daraus die Schnittpunkt von Φ mit der x-Achse.
- (f) Durch $\vec{v}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t \, (t-1) \, (t+2) 2 \\ t \end{pmatrix}$ ist in der Grundebene eine Kurve definiert. Über dieser Kurve ist auf der Funktionsfläche die Spur $|\gamma|$ eines Weges γ definiert. Skizziere die Funktionsfläche und $|\gamma|$ sowie eine Höhenlinienkarte.
- (g) Berechne den maximalen Punkt auf $|\gamma|$.
- (h) Berechne die totale Ableitung von f(x(t), y(t)) nach t.

Probl. 3 Gegeben ist die Funktion

$$f(x,y) = \frac{10}{3(x-1)^2 + 5(y+1)^2 + 10} + \frac{14}{2(x+1)^2 + 5(y-2)^2 + 10}.$$

- (a) Skizziere den Graphen und ebenfalls die Höhenlinienkarte der Funktion.
- (b) Berechne die Lage allfälliger Extrema.
- (c) Berechne die Richtungsableitung im Punkte $P_0 = (0, 2)$ in die Richtung eines Vektors, der aus \vec{e}_1 durch Drehung in positiver Richtung um 30^o entstanden ist.
- (d) i. Berechne in P_0 die Tangentialebene und den Durchstosspunkt der z-Achse durch diese Ebene.
 - ii. Berechne den grössten Neigungswinkel dieser Ebene.
 - iii. Berechne die Lage desjenigen Punktes, über dem die Funktion f(x,y) den grössten Wert auf dem Weg annimmt, der über der Kurve $g(x,y) = y x^2 = 0$ definiert ist.

% Rückseite

- **Probl. 4** (a) Berechne die Potenzreihenentwicklungen bis zum n-ten Glied: $f_1(x) = e^{-x^2}$, $x_0 = 0$, n = 8. Dabei soll die Potenzreihenentwicklungen von e^x verwendet werden. (Das Vorgehen muss gut sichtbar gezeigt werden.)
 - (b) Berechne approximativ mit Hilfe der Potenzreihenentwicklung bis zum n-ten Glied:

$$\int_{-2}^{2} f_1(x) \, dx = ?$$

- i. für n = 8,
- ii. für n = 100.
- iii. Vergleiche die Ergebnisse mit dem Taschenrechnerresultat bei numerischer Integration.
- (c) Berechne die Potenzreihenentwicklungen bis zum n—ten Glied: $f_2(x) = \cos(x^2) + e^{x^2}$, $x_0 = 0$, n = 8. Dabei sollen die Potenzreihenentwicklungen von e^x sowie von $\cos(x)$ verwendet werden. (Das Vorgehen muss sichtbar sein.)
- (d) Berechne von Hand die Potenzreihenentwicklungen bis zum n-ten Glied: $f_3(x) = \sqrt{x}, \ x_0 = 1, \ n = 6.$
- (e) Berechne den Konvergenzradius der Potehnzreihen von $f_3(x), x_0 = 1$
- (f) Berechne den Konvergenzradius der Potehnzreihevon $f_4(x) = \ln(x) \sin(x)$, $x_0 = 1$. (Es darf hier auch ein Plausibilitätsargument verwendet werden.)
- (g) Berechne den Grenzwert von Hand: $S = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{9} \frac{1}{8} + \frac{1}{27} \frac{1}{16} + \frac{1}{81} \pm \dots$
- (h) Berechne $\lim_{n\to\infty} (\sum_{k=1}^n \frac{1}{n} \ln(n))$.